Du 09/03 au 13/03/2026

Cette semaine de rentrée, les colles de Physique sont consacrées :

  • à l’aspect énergétique de la mécanique (chapitre C3) ;
  • au théorème du moment cinétique pour un point matériel (chapitre C6) – la mécanique du solide n’a pas encore été abordée ;
  • au mouvement dans un champ de forces centrales conservatives (chapitres C7).

Remarques importantes pour les interrogateurs :

  • J’ai fait le choix de ne pas introduire dès maintenant l’opérateur gradient. Ainsi le lien entre une force conservative et l’énergie potentielle dont elle dérive est dE_p=-\overrightarrow{F_c}\cdot d\overrightarrow{OM}. (Nous verrons la formule \overrightarrow{F_c}=-\overrightarrow{grad}\left({\cal E}_p\right) plus tard dans l’année, au mois de mai.)
  • Le calcul du moment d’une force par la méthode du bras de levier n’a pas encore été vue. Nous l’aborderons lorsque nous ferons la mécanique du solide.

Bien entendu, tous les savoir-faire liés aux chapitres précédents restent exigibles.

ASPECT ENERGETIQUE DE LA DYNAMIQUE

Puissance et travail d’une force.
– Reconnaître le caractère moteur ou résistant d’une force.
– Savoir que la puissance dépend du référentiel.
Loi de l’énergie cinétique et loi de la puissance cinétique dans un référentiel galiléen.
– Utiliser la loi appropriée en fonction du contexte.
Energie potentielle. Energie mécanique.
– Établir et connaître les expressions des énergies potentielles de pesanteur (champ uniforme), énergie potentielle gravitationnelle (champ créé par un astre ponctuel), énergie potentielle élastique, énergie électrostatique (champ uniforme et champ créé par une charge ponctuelle).
Mouvement conservatif.
– Distinguer force conservative et force non conservative. Reconnaître les cas de conservation de l’énergie mécanique. Utiliser les conditions initiales.
– Déduire d’un graphe d’énergie potentielle le comportement qualitatif : trajectoire bornée ou non, mouvement périodique, positions de vitesse nulle.
Positions d’équilibre. Stabilité.
– Déduire d’un graphe d’énergie potentielle l’existence de positions d’équilibre, et la nature stable ou instable de ces positions.
Petits mouvements au voisinage d’une position d’équilibre stable, approximation locale par un puits de potentiel harmonique.
– Identifier cette situation au modèle de l’oscillateur harmonique.
– Utiliser les résultats fournis par une méthode numérique pour mettre en évidence des effets non linéaires

THEOREME DU MOMENT CINETIQUE (EN MECANIQUE DU POINT !)

Moment cinétique d’un point matériel par rapport à un point et par rapport à un axe orienté
– Relier la direction et le sens du vecteur moment cinétique aux caractéristiques du mouvement.
– Maîtriser le caractère algébrique du moment cinétique scalaire.
Moment d’une force par rapport à un point ou un axe orienté
– Calculer le moment d’une force par rapport à un point ou à un axe orienté.
– Théorème du moment cinétique en point fixe dans un référentiel galiléen. Loi scalaire du moment cinétique dans un référentiel galiléen.
– Reconnaître les cas de conservation du moment cinétique.

MOUVEMENT DANS UN CHAMP DE FORCES CENTRALES CONSERVATIVES

Point matériel soumis à un seul champ de force centrale.
– Déduire de la loi du moment cinétique la conservation du moment cinétique.
– Connaître les conséquences de la conservation du moment cinétique : mouvement plan, loi des aires.

Energie potentielle effective. Etat lié et état de diffusion.
– Exprimer la conservation de l’énergie mécanique et construire une énergie potentielle effective.
– Décrire qualitativement le mouvement radial à l’aide de l’énergie potentielle effective. Relier le caractère borné à la valeur de l’énergie mécanique.

Champ newtonien. Lois de Kepler.
– Enoncer les lois de Kepler pour les planètes et les transposer au cas des satellites terrestres.
– Cas particulier du mouvement circulaire : satellite, planète.
– Montrer que le mouvement est uniforme et savoir calculer sa période.
– Etablir la troisième loi de Kepler dans le cas particulier de la trajectoire circulaire. Exploiter sans démonstration sa généralisation au cas d’une trajectoire elliptique.

Satellite géostationnaire.
– Calculer l’altitude du satellite et justifier sa localisation dans le plan équatorial.

Energie mécanique dans le cas du mouvement circulaire puis dans le cas du mouvement elliptique.
– Exprimer l’énergie mécanique pour le mouvement circulaire.
– Exprimer l’énergie mécanique pour le mouvement elliptique en fonction du demi grand axe.

Vitesses cosmiques : vitesses en orbite basse et vitesse de libération
– Exprimer ces vitesses et connaître leur ordre de grandeur en dynamique terrestre.